Mount Everest is teeming with life, from fungi to butterflies
In a recent study, DNA lurking in meltwater from the world’s tallest peak revealed a trove of biodiversity.
Published September 14, 2022
6 min read
In the spring of 2019, Tracie Seimon would lie awake listening to the deep rumble of cracking ice. The glacier she was sleeping on at the base of Mount Everest was shifting beneath her tent.
Seimon, a molecular biologist at the Wildlife Conservation Society in New York City, spent three weeks trekking around that glacier. She wanted to capture biodiversity in one of the most extreme environments on Earth, a mountain that is more than five miles tall, which is prone to subzero temperatures and limited oxygen.
But despite its inhospitable nature, the world’s tallest peak is teeming with life. Seimon and her team found 16 percent of Earth’s taxonomic orders–a classification including families, genera, and species–on just Mount Everest’s southern flank. They recently published their findings in the journal iScience.
“You feel very small as you’re venturing up into the mountains,” says Seimon. “It’s incredible.”
She adds that most trekkers aren’t aware of the abundant life around them. (Read about the team who climbed Everest to try to solve its greatest mystery. )
Mount Everest’s base camp sits atop the Khumbu Glacier, where Seimon’s team lived during part of the study in tents alongside summit-seeking hikers. The colorful cluster of tents sees around 40,000 people every year, which can be disruptive to the surrounding ecosystem, says co-author Anton Seimon, an atmospheric scientist at Appalachian State University and a National Geographic Explorer.
In addition to the foot traffic, climate change is also straining the mountain, which is why researchers wanted to create a baseline for its biodiversity. Scientists will be able to track future changes by knowing what life is on Mount Everest.
It’s “been a fascinating experience and a privilege to be part of the effort,” says Anton, who is married to Seimon.
Finding life in meltwater
The team went to Mount Everest as part of the Perpetual Planet initiative, a research collaboration between the National Geographic Society and Rolex studying Earth’s forests, oceans, and mountains. Other teams also set up weather stations and collected cores of ice. Their work was supported by a team made up of sherpas, who helped set up equipment, maintain camp, and guide them across Everest.
Seimon’s key to finding signs of life was collecting DNA from pools of thawed water. All living things regularly shed environmental DNA (or eDNA) into the air, water, and soil. Scientists can match a snippet from an unknown eDNA with data to determine its origin, much in the same way a library barcode gives librarians information about a book. (Learn how eDNA is revealing secrets of animals’ lives. )
The researchers focused on Everest’s highest ponds and streams, located between 14,700 and 18,000 feet in the high-alpine zone and beyond. In total, the team collected just over five gallons of water from 10 water bodies around the Khumbu region. From that, they identified 187 different orders, one sixth of all of Earth’s taxonomic orders.
A taxonomic order is a classification that helps scientists chart how individual organisms are distantly related to each other. For example, humans are classified as Homo (genus) and sapiens (species), but also fall under the family Hominidae and the order Primate, which also includes lemurs, monkeys, and apes.
In some cases, researchers could identify organisms more specifically down to the genus level; but because so little data exists about Mount Everest’s inhabitants, there was often not enough information to cross reference the DNA in such detail.
Seimon says that Mount Everest and other high mountain ecosystems are understudied. (Read how Mount Everest grew by two feet. )
“The global landmass that exists above 14,700 feet is less than three percent of the global land surface landmass,” she says. “It was very exciting to find as much biodiversity as we found up there.”
Looking deeper on Everest
Among the organisms swimming, flying, and scurrying on Mount Everest’s seemingly barren slopes were tardigrades and rotifers, two hardy microscopic critters that can survive even in the vacuum of space. Other insects, such as mayflies and butterflies, were also present.
“It’s the top of the world and it’s so inaccessible,” says Kristine Bohmann, a biologist from University of Copenhagen who works with airborne eDNA and was not involved in the research. According to her, the research shows that biodiversity research doesn’t always need a team of taxonomists. It can sometimes be done more efficiently and simpler in harsh environments. (Meet the animals that thrive in extreme mountain conditions. )
More research will help create a better record of diversity on Mount Everest and document specific organisms. Future studies that are conducted in different seasons could yield more biodiversity and help to identify the genera and species that live on the mountain under different climatic conditions.
Having created a baseline, one of Seimon’s next goals is to compare the data with future sampling, particularly to document the effects of climate change on Everest’s biodiversity. Their research can inform future studies and open the door to more research on the roof.
The National Geographic Society, committed to illuminating and protecting the wonder of our world, supported biologist Tracie Seimon and Explorer Anton Seimon’s work as part of the 2019 National Geographic and Rolex Perpetual Planet Everest Expedition. Learn more about the Society’s support of Explorers.
The author of 5 books, 3 of which are New York Times bestsellers. I’ve been published in more than 100 newspapers and magazines and am a frequent commentator on NPR.